General Bahr-Esseen inequalities and their applications

نویسندگان

  • István Fazekas
  • Sándor Pecsora
چکیده

We study the Bahr-Esseen inequality. We show that the Bahr-Esseen inequality holds with exponent p if it holds with exponent [Formula: see text] for the truncated and centered random variables. The Bahr-Esseen inequality is also true if the truncated random variables are acceptable. We then apply the results to obtain weak and strong laws of large numbers and complete convergence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Erratum to: General Bahr-Esseen inequalities and their applications

*Correspondence: [email protected] Faculty of Informatics, University of Debrecen, P.O. Box 400, Debrecen, 4002, Hungary 1 Erratum In the publication of this article [], there were two errors. ) The error in Section . Exponential inequalities and their consequences: ‘(a)X(b) = –aI{X < a} +XIa≤ |X| ≤ b + bI{X > b}.’ Should instead read: ‘(a)X(b) = aI{X < a} +XIa≤ X ≤ b + bI{X > b}...

متن کامل

New Jensen and Ostrowski Type Inequalities for General Lebesgue Integral with Applications

Some new inequalities related to Jensen and Ostrowski inequalities for general Lebesgue integral are obtained. Applications for $f$-divergence measure are provided as well.

متن کامل

Berry-Esseen bounds of weighted kernel estimator for a nonparametric regression model based on linear process errors under a LNQD sequence

In this paper, the authors investigate the Berry-Esseen bounds of weighted kernel estimator for a nonparametric regression model based on linear process errors under a LNQD random variable sequence. The rate of the normal approximation is shown as [Formula: see text] under some appropriate conditions. The results obtained in the article generalize or improve the corresponding ones for mixing de...

متن کامل

A Berry-Esseen type bound for the kernel density estimator based on a weakly dependent and randomly left truncated data

In many applications, the available data come from a sampling scheme that causes loss of information in terms of left truncation. In some cases, in addition to left truncation, the data are weakly dependent. In this paper we are interested in deriving the asymptotic normality as well as a Berry-Esseen type bound for the kernel density estimator of left truncated and weakly dependent data.

متن کامل

General Hardy-Type Inequalities with Non-conjugate Exponents

We derive whole series of new integral inequalities of the Hardy-type, with non-conjugate exponents. First, we prove and discuss two equivalent general inequa-li-ties of such type, as well as their corresponding reverse inequalities. General results are then applied to special Hardy-type kernel and power weights. Also, some estimates of weight functions and constant factors are obtained. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2017  شماره 

صفحات  -

تاریخ انتشار 2017